$$ \newcommand{\qed}{\tag*{$\square$}} \newcommand{\span}{\operatorname{span}} \newcommand{\dim}{\operatorname{dim}} \newcommand{\rank}{\operatorname{rank}} \newcommand{\norm}[1]{\|#1\|} \newcommand{\grad}{\nabla} \newcommand{\prox}[1]{\operatorname{prox}_{#1}} \newcommand{\inner}[2]{\langle{#1}, {#2}\rangle} \newcommand{\mat}[1]{\mathcal{M}[#1]} \newcommand{\null}[1]{\operatorname{null} \left(#1\right)} \newcommand{\range}[1]{\operatorname{range} \left(#1\right)} \newcommand{\rowvec}[1]{\begin{bmatrix} #1 \end{bmatrix}^T} \newcommand{\Reals}{\mathbf{R}} \newcommand{\RR}{\mathbf{R}} \newcommand{\Complex}{\mathbf{C}} \newcommand{\Field}{\mathbf{F}} \newcommand{\Pb}{\operatorname{Pr}} \newcommand{\E}[1]{\operatorname{E}[#1]} \newcommand{\Var}[1]{\operatorname{Var}[#1]} \newcommand{\argmin}[2]{\underset{#1}{\operatorname{argmin}} {#2}} \newcommand{\optmin}[3]{ \begin{align*} & \underset{#1}{\text{minimize}} & & #2 \\ & \text{subject to} & & #3 \end{align*} } \newcommand{\optmax}[3]{ \begin{align*} & \underset{#1}{\text{maximize}} & & #2 \\ & \text{subject to} & & #3 \end{align*} } \newcommand{\optfind}[2]{ \begin{align*} & {\text{find}} & & #1 \\ & \text{subject to} & & #2 \end{align*} } $$
Definition 10.1. A linear map is an isometry if for all , .
Definition 10.2. A matrix is an orthogonal matrix if its column vectors form an orthonormal list.
Theorem 10.2 The inverse of an orthogonal matrix is given by .
Proof. For any orthogonal matrix , ; this in turn implies that , for and . Since is full rank, must equal .
A corollary of theorem 10.2 is that is also an orthogonal matrix.
Theorem 10.3 A linear map is an isometry if and only if its matrix is orthogonal.
Proof.
Let be an orthogonal matrix. Then for each , , proving that corresponds to an isometry.
Let be the matrix of an isometry . By the correspondence between inner products and norms, for any , , which equals because is an isometry (verify for yourself that the this correspondence is true). Hence, .
Linear Algebra Done Right, by Sheldon Axler.